What Are QLC, DRAM Cache and SLC Cache? (Part 2)

In the previous article, we have already talked about QLC, which you can go to "What Exactly Are QLC, DRAM Cache and SLC Cache? (Part 1)"  for a refresher. This article mainly introduces the differences between DRAM Cache and SLC Cache.

b06a512d2f2c517363ac55dc180073c2-20210716113955
 

DRAM Cache, SLC Cache


These two terms are very often used by manufacturers for SSD features, but many consumers don't really understand the difference between the two. They all have Cache but why are the prices and read/write speeds all different? Are the manufacturers not being honest? In fact, the manufacturers are not lying, so please keep calm and hold on.

DRAM Cache and SLC Cache are completely different concepts, but both have a "Cache", which means they can actually do the "cache" action. In other words, both have the purpose of "acceleration", but the principle and logic of acceleration are different, and the cost is also different. This leads to a misunderstanding that may have happened just before.

First, let's take a look at DRAM Cache, which is a separate chip on the PCB of the SSD. Unlike the Flash IC and Controller, which are the main components of the SSD, the DRAM chip is responsible for the work in the SSD, as the general memory is responsible for the operation of a computer, which temporarily stores data for the purpose of accelerating processing. Also, because of this temporary storage function, many read/write processes can directly use the data in the temporary storage, which will be much faster than starting from the beginning. However, just like the memory, the data will be erased automatically when the power is off.

As for SLC Cache, it is not a separate external chip. Since it's called Cache, it means that it is not really an SLC NAND Flash, but a part of the space in the TLC or QLC's NAND Flash IC to simulate the SLC writing method (only 1 bit of data can be written in each Cell ), which can effectively improve the read/write performance of the SSD.

However, I don't know if you have noticed the keywords: "a part of the space", yes, when the sequential write capacity reaches the upper limit of "a part of the space", the read/write speed will drop back to the original value of TLC NAND Flash. For SSDs without DRAM Cache on the market, the indicated read/write speed is basically measured using the SLC Cache function.

Compared to DRAM Cache, SLC Cache is stored in TLC NAND Flash, so if it is not erased purposely, the data can be saved continuously and will not disappear due to power off.

Take TEAMGROUP's products, for example, there are 2.5" SATA SSD series with DRAM Cache and series without DRAM Cache. They are VULCAN SSD and VULCAN G SSD:

2de49534c29cc957c8cb3098558c3edd-20210716113955

These two models are typical examples of this topic. VULCAN SSD has DRAM Cache, and the read/write speed is about 560/510MB/s, while VULCAN G SSD is a product without DRAM Cache but with SLC Cache. The read/write speed is about 550/500MB/s. The difference in read/write speed alone is not that significant, but if you use HD TUNE software for large capacity sequential read/write, you will find that VULCAN SSD is more capable to maintain stable speed during sequential read and write.

The two products have different prices due to different costs, and the target customers are also different: if you are aiming for a good bargain, then I recommend VULCAN G SSD for excellent read/write performance at the cheapest price; if you have large files to read/write, or you want to pursue high-performance experience, then VULCAN SSD is the right choice for you.

That's all for today. I hope by providing articles like this from time to time, that you can have a better understanding of the products you are using, and also help you to reduce the situation of buying the wrong products. I'll see you next in the article!

SEARCH

Can not find our product or news? Try to enter your keywords.

Please Enable cookies to improve your user experience

依據歐盟施行的個人資料保護法,我們致力於保護您的個人資料並提供您對個人資料的掌握。
按一下「全部接受」,代表您允許我們置放 Cookie 來提升您在本網站上的使用體驗、協助我們分析網站效能和使用狀況,以及讓我們投放相關聯的行銷內容。您可以在下方管理 Cookie 設定。 按一下「確認」即代表您同意採用目前的設定。

Privacy preferences

依據歐盟施行的個人資料保護法,我們致力於保護您的個人資料並提供您對個人資料的掌握。
按一下「全部接受」,代表您允許我們置放 Cookie 來提升您在本網站上的使用體驗、協助我們分析網站效能和使用狀況,以及讓我們投放相關聯的行銷內容。您可以在下方管理 Cookie 設定。 按一下「確認」即代表您同意採用目前的設定。

Manage preferences

Necessary cookie

Always on
網站運行離不開這些 Cookie 且您不能在系統中將其關閉。通常僅根據您所做出的操作(即服務請求)來設置這些 Cookie,如設置隱私偏好、登錄或填充表格。您可以將您的瀏覽器設置為阻止或向您提示這些 Cookie,但可能會導致某些網站功能無法工作。

Functional cookie

這些 Cookie 允許提供增強功能和個性化內容,如視頻和實時聊天。我們或我們已將其服務添加至我們頁面上的第三方提供者可以進行設置。如果您不允許使用這些 Cookie,則可能無法實現部分或全部功能的正常工作

Marketing cookie

行銷 Cookie 能用來追蹤訪客造訪網站的歷程。目的是用來顯示與個別使用者相關或吸引他們的廣告,因此對發佈者或第三方廣告商而言比較重要。

定向 Cookie
這些 Cookie 由廣告合作夥伴通過我們的網站進行設置。這些公司可能利用 Cookie 構建您的興趣分佈圖並向您展示其他網站上的相關廣告。它們只需識別您的瀏覽器和設備便可發揮作用。如果您不允許使用這些 Cookie,您將不能體驗不同網站上的定向廣告。

社交媒體 Cookie
這些 Cookie 由我們已添加到網站上的一系列社交媒體服務設置,使您能夠與朋友和網絡共享我們的內容。它們能夠通過其他網站跟踪您的瀏覽器並構建您的興趣分佈圖。這可能會影響您在訪問其他網站時所查看的內容和消息。如果您不允許使用這些 Cookie,您可能無法使用或查看這些共享工具。